- EOC技术 您现在的位置 :首页 -- 技术论坛 -- EOC技术
- 上一篇:电力猫工作原理和设置
- 下一篇:多模光纤和单模光纤的区别
OFDM-正交频分复用技术原理和应用
来源:金钱猫科技股份有限公司 发表于:2015-09-09 浏览2426次 |
OFDM的英文全称为(Orthogonal Fre-quency Division Multiplexing),中文含义为正交频分复用技术。其采用一种不连续的多音调技术,将被称为载波的不同频率中的大量信号合并成单一的信号,从而完成信号传送。由于这种技术具有在杂波干扰下传送信号的能力,因此常常会被利用在容易受外界干扰或者抵抗外界干扰能力较差的传输介质中。
OFDM主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到在每个子信道上进行传输。正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道之间的相互干扰(ISI) 。每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道上可以看成平坦性衰落,从而可以消除码间串扰,而且由于每个子信道的带宽仅仅是原信道带宽的一小部分,信道均衡变得相对容易。
OFDM产生的过程
ƒ 时分多路频分多路OFDM
时分多路-- 频分多路--
.. 一个时域中单独的宽度为Δt的矩形脉冲对应连续频谱:
.. 频谱不是离散谱线,而是一个连续的sin(x)/x抽样函数线。
Δt的变化使得对应频域的Δf也变化:
ƒ 如果Δt趋向于0,对应的Δf趋向于无穷大;
ƒ 这对应迪拉克脉冲,其频谱为一条直线,包含所有频率分量。
如果Δt趋向于无穷大,对应的Δf趋向于0;这对应时域中一条直线,其频谱为零频处的一条谱线,表示DC分量。
二者之间存在以下的关系: Δf=1/ Δt
一个间隔为Tp,宽度为Δt的矩形脉冲序列也对应着频域的sin(x)/x形函数,但此时只有离散谱线,谱线间隔为fp=1/Tp,谱线幅度随sin(x)/x抽样函数包络变化。
周期矩形脉冲信号的频谱
不同τ值时周期矩形信号的频谱 (a) τ=T/5; (b) τ=T/10
不同T值时周期矩形信号的频谱 (a) T=5τ; (b) T=10 τ
矩形脉冲与正交性之间有什么关系?
ƒ 载波信号都是正弦函数信号。
ƒ 一个频率为fs=1/Ts的正弦波信号对应频谱为频域中位于频率fs和-fs的两条离散谱线。
这些正弦信号载波是通过幅度和频率变化来携带信息的(幅移键控和频移键控)。
OFDM系统关键系统技术:

OFDM系统对定时和频率偏移敏感,实际应用中与FDMA、TDMA和CDMA等多址方式结合使用时,时域和频率同步尤为重要。同步分为捕获和跟踪两个阶段。
在下行链路中,基站向各个移动终端广播式发同步信号,下行链路同步相对简单,较易实现。
在上行链路中,来自不同移动终端的信号必须同步到达基站,才能保证子载波间的正交性。基站根据各移动终端发来的子载波携带信息进行时域和频域同步信息的提取,再由基站发回移动终端,以便让移动终端进行同步。具体实现时,同步将分为时域同步和频域同步,也可以时频域同时进行同步。
信道估计
在OFDM系统中,信道估计器的设计主要有两个问题:一是导频信息的选择。由于无线信道常常是衰落信道,需要不断对信道进行跟踪,因此导频信息也必须不断的传送。二是既有较低的复杂度又有良好的导频跟踪能力的信道估计器的设计。
在实际设计中,导频信息选择和最佳估计器的设计通常又是相互关联的,因为估计器的性能与导频信息的传输方式有关。
信道编码和交织
为了提高数字通信系统性能,信道编码和交织是通常采用的方法。对于衰落信道中的随机错误,可以采用信道编码;对于衰落信道中的突发错误,可以采用交织。实际应用中,通常同时采用信道编码和交织,进一步改善整个系统的性能。
在OFDM系统中,如果信道衰落不是太深,均衡是无法再利用信道的分集特性来改善系统性能的,因为OFDM系统自身具有利用信道分集特性的能力,一般的信道特性信息已经被OFDM这种调制方式本身所利用了。但是,OFDM系统的结构却为在子载波间进行编码提供了机会,形成COFDM方式。编码可以采用各种码,如分组码、卷积码等,卷积码的效果要比分组码好。
降低峰均功率比
由于OFDM信号时域上表现为N个正交子载波信号的叠加,当这N个信号恰好均以峰值占相加时,OFDM信号也将产生最大峰值,该峰值功率是平均功率的N倍。尽管峰值功率出现的概率较低,但为了不失真地传输这些高峰均功率比(Peak to Average Power Ratio,PAPR)的OFDM信号,发送端对高功率放大器(HPA)的线性度要求很高且发送效率极低,接收端对前端放大器以及A/D变换器的线性度要求也很高。因此,高的PAPR使得OFDM系统的性能大大下降甚至直接影响实际误应用。为了解决这一问题,人们提出了基于信号畸变技术、信号扰码技术和基于信号空间扩展等降低OFDM系统PAPR的方法。
均衡
在一般的衰落环境下,OFDM系统中均衡不是有效改善系统性能的方法。因为均衡的实质是补偿多径信道引起的码间干扰,而OFDM技术本身已经利用了多径信道的分集特性,因此在一般情况下,OFDM系统就不必再做均衡了。
在高度散射的信道中,信道记忆长度很长,CP的长度必须很长,才能够使ISI尽量不出现。但是,CP长度过长必然导致能量大量损失,尤其对子载波个数不是很大的系统。这时,可以考虑加均衡器以使CP的长度适当减小,即通过增加系统的复杂性换取系统频带利用率的提高。
目前OFDM技术已经被广泛应用于广播式的音频、视频领域和民用通信系统,主要的应用包括:非对称的数字用户环路(ADSL)、ETSI标准的数字音频广播(DAB)、数字视频广播(DVB)、高清晰度电视(HDTV)、无线局域网(WLAN)及下一代广播电视网(NGB)等
高清数字电视广播
OFDM在数字广播电视系统中取得了广泛的应用,其中数字音频广播(DAB)标准是第一个正式使用OFDM的标准。另外,当前国际上全数字高清晰度电视传输系统中采用的调制技术中就包括OFDM技术,欧洲HDTV传输系统已经采用COFDM(codedOFDM:编码OFDM)技术。它具有很高的频谱利用率,可以进一步提高抗干扰能力,满足电视系统的传输要求。选择OFDM作为数字音频广播和数字视频广播(DVB)的主要原因在于:OFDM技术可以有效地解决多径时延扩展问题。
无线局域网
HiperLAN/2物理层应用了OFDM和链路自适应技术,媒体接入控制(MAC)层采用面向连接、集中资源控制的TDMA/TDD方式和无线ATM技术,最高速率达54Mbps,实际应用最低也能保持在20Mbps左右。另外,IEEE802.11无线局域网工作于ISM免许可证频段,分别在5.8GHz和2.4GHz两个频段定义了采用OFDM技术的IEEE802.11a和IEEE802.11g标准,其最高数据传输速率提高到54Mbps。
宽带无线接入
OFDM技术适用于无线环境下的高速传输,不仅应用于无线局域网,还在宽带无线接入(BWA)中得到应用。IEEE802.16工作组专门负责BWA方面的技术工作,它已经开发了一个2GHz~11GHzBWA的标准—IEEE802.16a,物理层就采用了OFDM技术。该标准不仅是新一代的无线接入技术,而且对未来蜂窝移动通信的发展也具有重要意义。